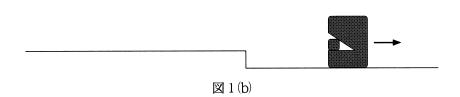

**物 理** (注) この科目には、選択問題があります。(3ページ参照。)


### 第1問 (必答問題)

次の問い(問1~5)に答えよ。

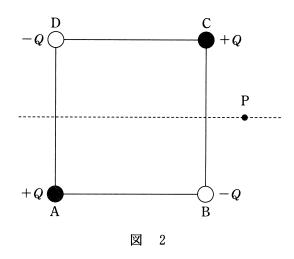
[解答番号 1 ~ 5 ](配点 25)

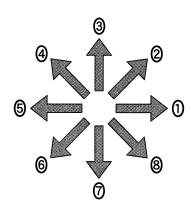
**問 1** 図 1 (a)のように、速さv で進む質量m の小物体が、質量M の静止していた物体と衝突し、図 1 (b)のように二つの物体は一体となり動き始めた。一体となった物体の運動エネルギーとして正しいものを、下の $\mathbf{0}$   $\sim$   $\mathbf{9}$  のうちから一つ選べ。ただし、床は水平でなめらかであるとする。



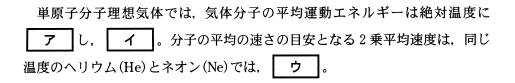


- $0 \frac{Mv^2}{2}$
- $3 \frac{(M+m)v^2}{2}$


- $\frac{M^2v^2}{2(M+m)}$
- $\frac{m^2v^2}{2(M+m)}$

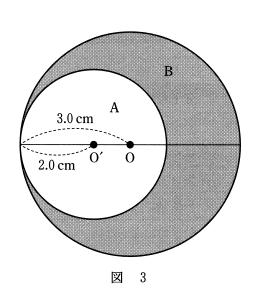

- $9 \frac{Mmv^2}{M+m}$

- **問 2** 空気中を伝わる音に関する記述として最も適当なものを、次の①~⑤のうちから一つ選べ。 2


- ① 音の速さは、振動数に比例して増加する。
- ② 音を1オクターブ高くすると、波長は2倍になる。
- ③ 音が障害物の背後にまわりこむ現象は、回折と呼ばれる。
- **④** 振動数が等しく、振幅が少し異なる二つの波が重なると、うなりが生じる。
- **⑤** 音源が観測者に近づく速さが大きいほど、観測者が聞く音の振動数は小さくなる。

問3 図2のように、正方形 ABCD の頂点に電気量 ± Q(Q > 0)の点電荷を固定する。点 Pでの電場(電界)の向きを表す矢印として最も適当なものを、下の ①~⑧のうちから一つ選べ。ただし、点 Pは正方形と同じ面内にあり、辺 BC の垂直二等分線(破線)上で、辺 BC より右側にある。 3





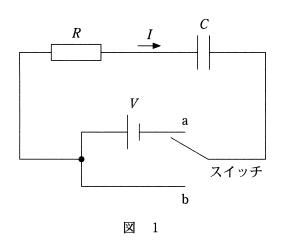

| 問 | 4 | 次の文章 | む中の空欄[ | ア            | ~   | ウ    | に入れ | れる語句 | 可の組合 | せとし、 | て最も通 | 鱼当 |
|---|---|------|--------|--------------|-----|------|-----|------|------|------|------|----|
|   | な | ものを, | 下の①~@  | <b>)</b> のうち | らかり | ら一つ選 | べ。  | 4    |      |      |      |    |



|   | ア   | 1            | ウ          |
|---|-----|--------------|------------|
| 0 | 比 例 | 分子量によらない     | ヘリウムの方が大きい |
| 2 | 比 例 | 分子量によらない     | 同じになる      |
| 3 | 比 例 | 分子量とともに大きくなる | ネオンの方が大きい  |
| 4 | 比 例 | 分子量とともに大きくなる | 同じになる      |
| 6 | 反比例 | 分子量によらない     | ヘリウムの方が大きい |
| 6 | 反比例 | 分子量によらない     | 同じになる      |
| 0 | 反比例 | 分子量とともに大きくなる | ネオンの方が大きい  |
| 8 | 反比例 | 分子量とともに大きくなる | 同じになる      |

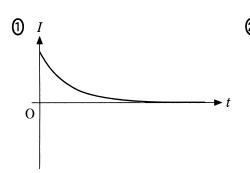
問 5 点 O を中心とする半径 3.0 cm の一様な厚さの円板がある。図 3 のように、点 O′を中心とし、その円板に内接する半径 2.0 cm の円板 A を切り取った。残った物体 B(灰色の部分)の重心を G とする。直線 O′O 上にある重心 G の位置と、OG 間の距離の組合せとして最も適当なものを、下の①~⑧のうちから一つ選べ。 5



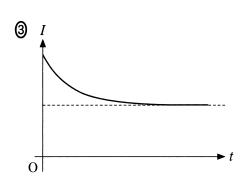

|   | 重心Gの位置  | OG 間の距離〔cm〕 |
|---|---------|-------------|
| 0 | 点0の右側   | 0.4         |
| 2 | 点0の右側   | 0.8         |
| 3 | 点 O の右側 | 1.2         |
| 4 | 点0の右側   | 2. 2        |
| 6 | 点0の左側   | 0.4         |
| 6 | 点 O の左側 | 0.8         |
| 0 | 点0の左側   | 1.2         |
| 8 | 点 O の左側 | 2. 2        |

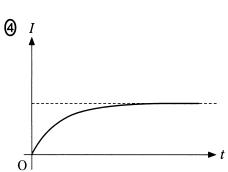
### 第2問 (必答問題)

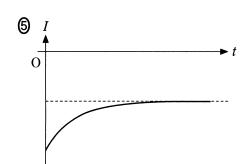
次の文章 $(\mathbf{A} \cdot \mathbf{B})$ を読み、下の問い(問1~4)に答えよ。


[解答番号 1 ~ 4 ](配点 20)

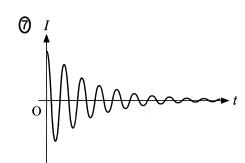
A 図1のように、電圧 Vの直流電源、抵抗値 Rの抵抗、電気容量 Cのコンデンサーおよびスイッチを接続した。はじめスイッチは開いており、コンデンサーに電荷は蓄えられていない。ただし、図1中の矢印の向きを電流 Iの正の向きとする。

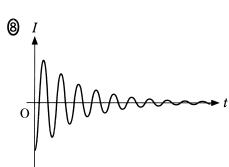




**問 1** 時刻 t=0 にスイッチを a 側に入れた。電流 I と時刻 t の関係を表すグラフとして最も適当なものを、次ページの $\mathbf{0}$  ~  $\mathbf{8}$  のうちから一つ選べ。


1





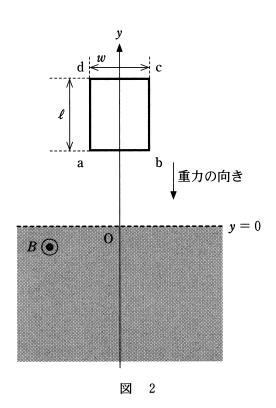





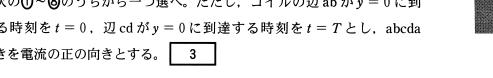


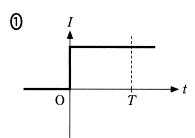


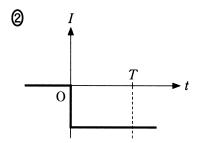


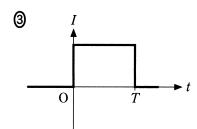



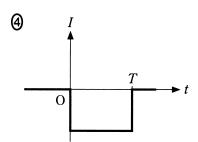

問 2 スイッチを a 側に入れてから十分に長い時間が経過した後、スイッチを b 側に入れた。スイッチをb側に入れてから電流が流れなくなるまでの間 に、抵抗で発生するジュール熱を表す式として正しいものを、次の①~⑧の うちから一つ選べ。 2

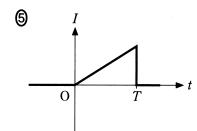

- **6**  $\frac{CV}{2}$  **7**  $CV^2$  **8**  $\frac{CV^2}{2}$

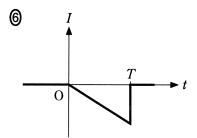

**B** 図 2 のように、鉛直上向きにy 軸をとり、 $y \le 0$  の領域に、磁束密度の大きさ B の一様な磁場(磁界)を紙面に垂直に裏から表の向きにかけた。この磁場領域の 鉛直上方から、細い金属線でできた 1 巻きの長方形コイル abcd を、辺 ab を水 平にして落下させる。コイルの質量はm、抵抗値はR、辺の長さはw と $\ell$  である。

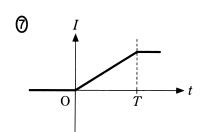

コイルをある高さから落とすと、辺 ab が y=0 に到達してから辺 cd が y=0 に到達するまでの間、一定の速さで落下した。ただし、コイルは回転も変形もせず、コイルの面は常に紙面に平行とし、空気の抵抗および自己誘導の影響は無視できるものとする。

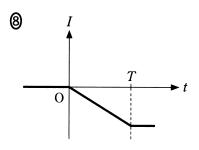




を、次の $\mathbf{0}$ ~ $\mathbf{8}$ のうちから一つ選べ。ただし、コイルの辺 ab が y=0 に到 達する時刻をt=0, 辺 cd がy=0 に到達する時刻をt=T とし、abcda の向きを電流の正の向きとする。














— 15 —

(2108—15)

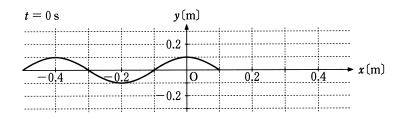
**問 4** 時刻 t=0 と t=T の間で,コイルが落下する一定の速さ v を表す式として正しいものを,次の $\bigcirc$ ~ $\bigcirc$ のうちから一つ選べ。ただし,重力加速度の大きさを g とする。v=

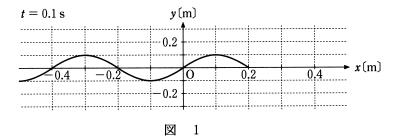
- $0 \frac{mgR}{B^2w}$
- $\frac{mgR}{R^2 \ell w}$
- $\frac{mgR}{R^2w^2}$

- $\partial \frac{mgR}{B\ell w}$

#### 第3問 (必答問題)

次の文章 $(A \cdot B)$ を読み、下の問い(問1~5)に答えよ。

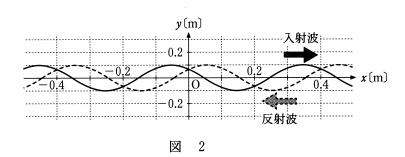

[解答番号 1 ~ 6 ](配点 20)


A 正弦波とその重ね合わせについて考える。

**問 1** x 軸の正の向きに正弦波が進行している。図 1 は、時刻 t(s) が 0 s  $\geq 0.1$  s の ときの、位置 x(m) と媒質の変位 y(m) の関係を表している。時刻  $t(t \geq 0)$  における x = 0 m での媒質の変位が

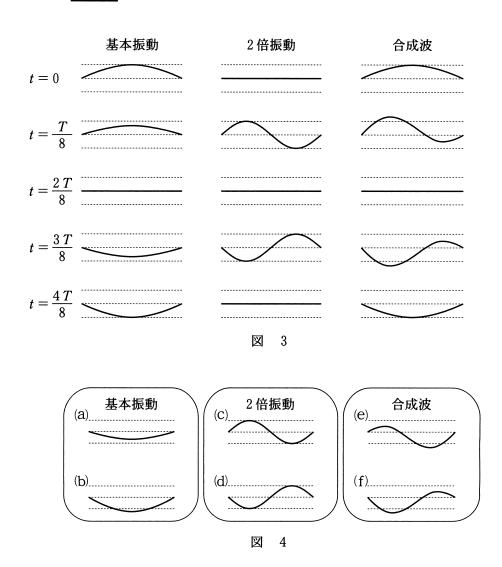
$$y = 0.1 \sin\left(2\pi \frac{t}{T} + \alpha\right)$$

と表されるとき、T(s)と $\alpha(rad)$ の数値の組合せとして最も適当なものを、下の $\mathbf{0}$ ~ $\mathbf{0}$ のうちから一つ選べ。  $\boxed{1}$ 



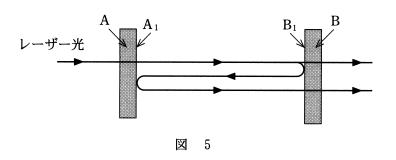



|   | 0   | 2               | 3   | 4                | 6   | 6               | Ø   | 8                |
|---|-----|-----------------|-----|------------------|-----|-----------------|-----|------------------|
| T | 0.2 | 0.2             | 0.2 | 0.2              | 0.4 | 0.4             | 0.4 | 0.4              |
| α | 0   | $\frac{\pi}{2}$ | π   | $\frac{3\pi}{2}$ | 0   | $\frac{\pi}{2}$ | π   | $\frac{3\pi}{2}$ |


**問 2** 次の文章中の空欄 **ア** ・ **イ** に入れる数値と語の組合せとして最も適当なものを、下の①~⑥のうちから一つ選べ。 **2** 

x軸の正の向きに進行してきた波(入射波)は、 $x=1.0\,\mathrm{m}$ の位置で反射して逆向きに進み、入射波と反射波の合成波は定常波となる。図 2 は、ある時刻における入射波の波形を実線で、反射波の波形を破線で表している。 $-0.2\,\mathrm{m} \le x \le 0.2\,\mathrm{m}$  における定常波の節の位置をすべて表すと、x=  $\boxed{7}$   $\mathrm{m}$  である。また、入射波は $x=1.0\,\mathrm{m}$  の位置で  $\boxed{4}$  反射している。




|   | 7                                  | 1   |
|---|------------------------------------|-----|
| 0 | - 0.1, 0.1                         | 固定端 |
| 2 | - 0.1, 0.1                         | 自由端 |
| 3 | - 0.2, 0, 0.2                      | 固定端 |
| 4 | - 0.2, 0, 0.2                      | 自由端 |
| 6 | -0.2, -0.1, 0, 0.1, 0.2            | 固定端 |
| 6 | -0.2, $-0.1$ , $0$ , $0.1$ , $0.2$ | 自由端 |

**問 3** 両端を固定した弦の振動を考える。基本振動の周期はTであり,図 3 には時刻 t=0 から  $t=\frac{4\,T}{8}$  までの基本振動,2 倍振動,およびそれらの合成波の様子を, $\frac{T}{8}$  ごとに示している。時刻  $t=\frac{5\,T}{8}$  でのそれぞれの波形を表す図 4 の記号(a)~(f)の組合せとして最も適当なものを,次ページの $\mathbf{0}$ ~ $\mathbf{0}$ 0 のうちから一つ選べ。ただし,図 3 と図 4 の破線と破線の間隔は,すべて等しい。  $\boxed{3}$ 



|   | 基本振動 | 2 倍振動 | 合成波 |
|---|------|-------|-----|
| 0 | (a)  | (c)   | (e) |
| 2 | (a)  | (c)   | (f) |
| 3 | (a)  | (d)   | (e) |
| 4 | (a)  | (d)   | (f) |
| 6 | (b)  | (C)   | (e) |
| 6 | (b)  | (C)   | (f) |
| 7 | (p)  | (d)   | (e) |
| 8 | (p)  | (d)   | (f) |

**B** 図 5 のように、真空中で 2 枚の平面ガラス板 A、B の向かい合う面  $A_1$  と面  $B_1$  を平行に配置した。ガラス板 A の左側からレーザー光を面  $A_1$  と面  $B_1$  に垂直に入射させた。このとき、ガラス板 A と B を直接透過する光と、面  $B_1$  と面  $A_1$  で 1 回ずつ反射した後ガラス板 B を透過する光とが干渉する。ただし、ガラスの屈折率は 1 より大きいとする。また、面  $A_1$  と面  $B_1$  以外での反射は考えないものとする。



**問 4** 次の文章中の空欄 **ウ** ・ **エ** に入れる語句の組合せとして最も適当なものを、次ページの①~⑥のうちから一つ選べ。 **4** 

真空中を進んできた光がガラス面で 1 回反射するとき,位相は  $\dot{\mathbf{p}}$  。 レーザー光の波長を  $\lambda$  に固定し,図 5 の面  $A_1$  と面  $B_1$  の間隔を d にすると,ガラス板 B の右側で二つの透過光は干渉し強めあった。次に,干渉した光の強度を測定しながら,間隔を d から  $d+\frac{\lambda}{2}$  に徐々に変化させると,二つの透過光は  $\mathbf{I}$  。

|   | Ď           | エ            |
|---|-------------|--------------|
| 0 | 変化しない       | 一度弱めあった後強めあう |
| 2 | 変化しない       | しだいに弱めあう     |
| 3 | 変化しない       | 強めあったまま変化しない |
| 4 | πだけ変化(反転)する | 一度弱めあった後強めあう |
| 6 | πだけ変化(反転)する | しだいに弱めあう     |
| 6 | πだけ変化(反転)する | 強めあったまま変化しない |

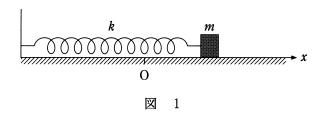


問 5 次の文章中の空欄 5 · 6 に入れる式および数値として最も適 当なものを、下のそれぞれの解答群から一つずつ選べ。 5 6

- 5 の解答群

- 6 の解答群
- $0.5 \times 10^7$
- (2) 7. 5 × 10<sup>8</sup>
- $3 7.5 \times 10^9$

- **4**  $1.5 \times 10^7$
- **(5)**  $1.5 \times 10^8$
- **6**  $1.5 \times 10^9$


#### 物 玾

#### 第4問 (必答問題)

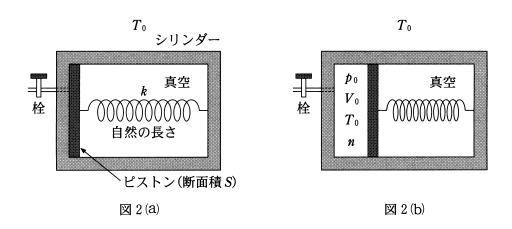
次の文章 $(A \cdot B)$ を読み、下の問い(問1~5)に答えよ。

〔解答番号 5 〕(配点 20)

A ばね定数 k の軽いばねの一端に質量 m の小物体を取り付け、あらい水平面上 に置き、ばねの他端を壁に取り付けた。図1のようにx軸をとり、ばねが自然の 長さのときの小物体の位置を原点 O とする。ただし、重力加速度の大きさを g, 小物体と水平面の間の静止摩擦係数を $\mu$ , 動摩擦係数を $\mu$  とする。また、小 物体は x 軸方向にのみ運動するものとする。



問 1 小物体を位置xで静かに放したとき、小物体が静止したままであるよう な、位置xの最大値 $x_M$ を表す式として正しいものを、次の(1)~(7)のうちか ら一つ選べ。 $x_{\rm M}=$  1


**問 2** 次の文章中の空欄 **ア** ・ **イ** に入れる式の組合せとして正しいものを、下の①~**8**のうちから一つ選べ。 **2** 

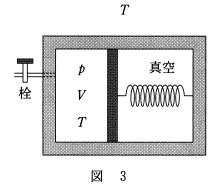


問1の $x_M$ より右側で小物体を静かに放すと、小物体は動き始め、次に速度が0となったのは時間 $t_1$ が経過したときであった。この間に、小物体にはたらく力の水平成分Fは、小物体の位置 exとするとF=-k(x-p)と表される。この力は、小物体に位置 ex を中心とする単振動を生じさせる力と同じである。このことから、時間 $t_1$ は ex とわかる。

|   | ア                         | 1                        |
|---|---------------------------|--------------------------|
| 0 | <u>μ'mg</u><br>2 <b>k</b> | $\pi \sqrt{\frac{m}{k}}$ |
| 0 | $\frac{\mu'mg}{2k}$       | $2\pi\sqrt{\frac{m}{k}}$ |
| 3 | $\frac{\mu'mg}{2k}$       | $\pi \sqrt{\frac{k}{m}}$ |
| 4 | $\frac{\mu'mg}{2k}$       | $2\pi\sqrt{\frac{k}{m}}$ |
| 6 | $\frac{\mu'mg}{k}$        | $\pi \sqrt{rac{m}{k}}$  |
| 6 | $\frac{\mu'mg}{k}$        | $2\pi\sqrt{\frac{m}{k}}$ |
| Ø | <u>μ'mg</u><br>k          | $\pi\sqrt{\frac{k}{m}}$  |
| 8 | $\frac{\mu'mg}{k}$        | $2\pi\sqrt{\frac{k}{m}}$ |

**B** 図 2 (a)のように、熱をよく伝える材料でできたシリンダーの端に断面積s の なめらかに動くピストンがあり、ばね定数k のばねが自然の長さで接続されている。ピストンの右側は常に真空になっている。次に栓を開いて、シリンダー内部 に物質量n の単原子分子理想気体を入れて再び密閉したところ、図 2 (b)のように、気体の圧力が $p_0$ 、体積が $V_0$ 、温度(絶対温度)が外の温度と同じ $T_0$  になった。ただし、気体定数をRとする。




**問 3** 図 2 (b)の状態で、ばね定数 k とばねに蓄えられたエネルギーを表す式の組合せとして正しいものを、次の $\mathbf{0}$   $\sim$   $\mathbf{9}$  のうちから一つ選べ。  $\boxed{\mathbf{3}}$ 

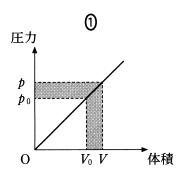


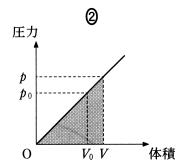
|   | k                     | ばねのエネルギー              |
|---|-----------------------|-----------------------|
| 0 | $\frac{p_0V_0}{S}$    | $\frac{1}{2}$ $nRT_0$ |
| 2 | $\frac{p_0V_0}{S}$    | $nRT_0$               |
| 3 | $\frac{p_0V_0}{S}$    | $\frac{3}{2}nRT_0$    |
| 4 | $\frac{p_0S^2}{V_0}$  | $\frac{1}{2}$ $nRT_0$ |
| 6 | $\frac{p_0S^2}{V_0}$  | $nRT_0$               |
| 6 | $\frac{p_0S^2}{V_0}$  | $\frac{3}{2}nRT_0$    |
| Ø | $\frac{p_0S^2}{2V_0}$ | $\frac{1}{2}nRT_0$    |
| 8 | $\frac{p_0S^2}{2V_0}$ | $nRT_0$               |
| 9 | $\frac{p_0S^2}{2V_0}$ | $\frac{3}{2}nRT_0$    |

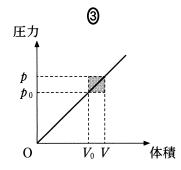
**問 4** 次に、図 3 のように、外の温度を T まで上昇させると、気体の圧力は p、 体積はV, 温度はTになった。このとき、気体の内部エネルギーの増加分  $\Delta U$ を表す式として正しいものを、下の $\mathbf{0}$ ~ $\mathbf{9}$ のうちから一つ選べ。

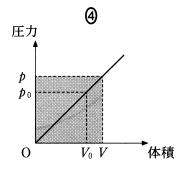
 $\Delta U = \boxed{4}$ 

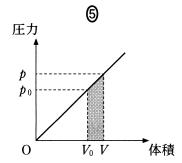


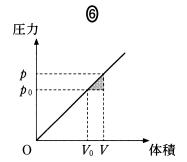

- **4**  $\frac{1}{2} nRT_0$  **5**  $nRT_0$  **6**  $\frac{3}{2} nRT_0$


- (7)  $\frac{1}{2} nR(T T_0)$  (8)  $nR(T T_0)$  (9)  $\frac{3}{2} nR(T T_0)$


問 5 問 3・問 4 において、気体の圧力と体積がそれぞれ  $p_0$ 、 $V_0$  から p, V に変化したときに、気体がした仕事を考える。その仕事の大きさは、気体の圧力と体積の関係を表すグラフにおける面積で表される。この面積を灰色部分で示したものとして最も適当なものを、次の $\mathbf{1}$ ~ $\mathbf{6}$ のうちから一つ選べ。





5

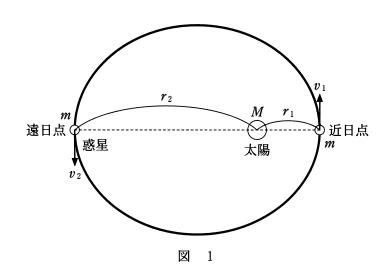






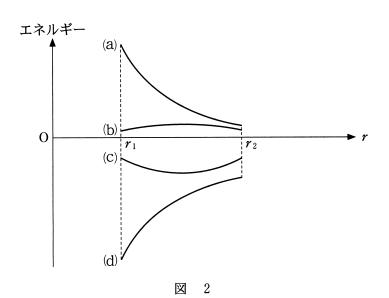





#### 物 理 第5問・第6問は、いずれか1問を選択し、解答しなさい。

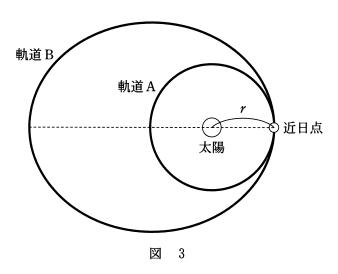
#### 第5間 (選択問題)


太陽を周回する惑星の運動に関する次の文章を読み、下の問い(**問**1  $\sim$  3)に答えよ。

惑星が太陽に最も近づく点を近日点,最も遠ざかる点を遠日点と呼ぶ。図1のように,太陽からの惑星の距離と惑星の速さを,近日点で $r_1$ ,  $v_1$ , 遠日点で $r_2$ ,  $v_2$ とする。また,太陽の質量,惑星の質量,万有引力定数をそれぞれM, m, Gとする。



$$6 r_1 v_1 = r_2 v_2$$


**問 2** 図  $2 o(a) \sim (d) o$  曲線のうち、太陽からの惑星の距離 r と惑星の運動エネルギーの関係を表すものはどれか。また、距離 r と 万有引力による位置エネルギーの関係を表すものはどれか。その組合せとして最も適当なものを、下の $1 \sim 6$  のうちから一つ選べ。ただし、万有引力による位置エネルギーは、無限遠で 0 とする。 2



|   | 運動エネルギー | 位置エネルギー |
|---|---------|---------|
| 0 | (a)     | (b)     |
| 2 | (a)     | (C)     |
| 3 | (a)     | (d)     |
| 4 | (p)     | (a)     |
| 6 | (p)     | (C)     |
| 6 | (P)     | (d)     |

**問 3** 次の文章中の空欄 **ア** ・ **イ** に入れる式と語の組合せとして最も適当なものを、次ページの①~**8**のうちから一つ選べ。 **3** 

惑星の軌道が円である場合と、楕円である場合の力学的エネルギーについて考える。図3の軌道Aのように、惑星が半径rの等速円運動をすると、その速さはv=  $\mathbf{P}$  となる。一方、軌道Bのように、近日点での太陽からの距離がrとなる楕円運動の場合、惑星の力学的エネルギーは、軌道Aの場合の力学的エネルギーに比べて  $\mathbf{I}$  。



|   | ア                      | 1   |
|---|------------------------|-----|
| 0 | $m\sqrt{\frac{G}{Mr}}$ | 大きい |
| 2 | $m\sqrt{rac{G}{Mr}}$  | 小さい |
| 3 | $M\sqrt{rac{G}{mr}}$  | 大きい |
| 4 | $M\sqrt{rac{G}{mr}}$  | 小さい |
| 6 | $\sqrt{\frac{Gm}{r}}$  | 大きい |
| 6 | $\sqrt{\frac{Gm}{r}}$  | 小さい |
| Ø | $\sqrt{\frac{GM}{r}}$  | 大きい |
| 8 | $\sqrt{\frac{GM}{r}}$  | 小さい |

物 理 第5問・第6問は、いずれか1問を選択し、解答しなさい。

#### 第6問 (選択問題)

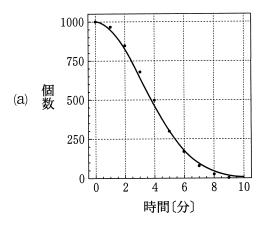
| 原子核と素 | 粒子に | 関す | る次の | 問い(問1 | ~ <b>3</b> )に答え | .よ。 |
|-------|-----|----|-----|-------|-----------------|-----|
| 〔解答番号 | 1   | ~  | 3   | 〕(配点  | 15)             |     |

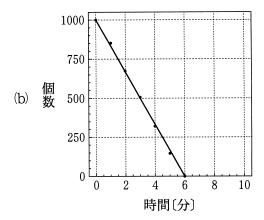
- - ① 原子核の内部では、正の電荷をもった陽子と負の電荷をもった中性子が クーロン力によって結びついている。
  - ② ばらばらの状態にある陽子 6 個と中性子 6 個の質量の和は、<sup>12</sup>C の原子核の質量よりも大きい。
  - ③ 陽子の内部ではクォークが2個結びついており、クォークの内部では電子 とニュートリノが1個ずつ結びついている。
  - **4** 素粒子であるクォークは電荷をもたず、電気的に中性である。
  - **⑤** 自然界に存在する基本的な力は、重力、弱い力、強い力の3種類であると 考えられている。

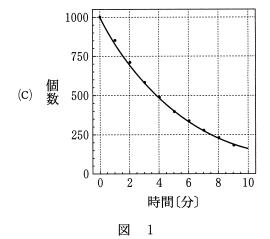
| 問 | 2 | 次の文中の空欄            | ア    | •           | イ    | に入れる数値の組合せとして正しいもの |
|---|---|--------------------|------|-------------|------|--------------------|
|   | を | e, 下の <b>①~⑨</b> の | うちから | <u>;</u> —, | つ選べ。 | 2                  |

 $^{238}_{92}$ Uは,  $\red{D}$  回の $\alpha$  崩壊と  $\red{d}$  回の $\beta$  崩壊( $eta^-$  崩壊ともいう)によって,安定な $^{206}_{82}$ Pb に変化する。

|   | ・ア | 1  |  |
|---|----|----|--|
| 0 | 32 | 26 |  |
| 2 | 32 | 10 |  |
| 3 | 32 | 6  |  |
| 4 | 16 | 26 |  |
| 6 | 16 | 10 |  |
| 6 | 16 | 6  |  |
| 0 | 8  | 26 |  |
| 8 | 8  | 10 |  |
| 9 | 8  | 6  |  |


**問 3** 次の文章中の空欄 ウ・ エ に入れる記号と数値の組合せとして最も適当なものを、下の①~⑨のうちから一つ選べ。 3


放射能をもつ原子核が崩壊する確率は、その原子核の数や生成されてからの時間には関係がないので、原子核の数が減少する様子は、さいころを使った次の簡単な模擬実験で再現できる。


さいころを 1000 個用意し、それぞれを原子核とみなす。すべてのさいころを同時にふって、1の目が出たさいころを崩壊した原子核と考えて取り除き、残ったさいころの個数を記録する。以後、残ったさいころをふって1の目が出たさいころを取り除く操作を1分ごとに繰り返す。さいころの個数と時間の関係をグラフに表すと、図1の ウ が得られた。

この実験結果は、実際の原子核の崩壊の様子をよく表している。はじめに放射能をもつ原子核が 1000 個あったとき、それが 500 個に減少するのにかかる時間をTとすると、はじめから 2Tの時間が経過した時の原子核数は約  $\Box$  個となることがわかる。

|   | ウ   | エ   |
|---|-----|-----|
| 0 | (a) | 250 |
| 2 | (a) | 50  |
| 3 | (a) | 0   |
| 4 | (p) | 250 |
| 6 | (b) | 50  |
| 6 | (b) | 0   |
| Ø | (C) | 250 |
| 8 | (C) | 50  |
| 9 | (C) | 0   |







# 理 (100点満点)

| 問題番号(配点)                                                                                                              | 設                                                                            | 問 | 解答番号            | 正 解 | 配点 | 問題番号(配点) | 設 | 問 | 解答番号            | 正 解 | 配点 |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---|-----------------|-----|----|----------|---|---|-----------------|-----|----|
|                                                                                                                       | 1                                                                            |   | 1               | 5   | 5  | 第3問      | A | 1 | 1               | 6   | 4  |
| 第1問                                                                                                                   | 2                                                                            |   | 2               | 3   | 5  |          |   | 2 | 2*3             | 2   | 4  |
|                                                                                                                       | 3                                                                            |   | 3               | 7   | 5  |          |   | 3 | 3*4             | 1   | 4  |
| (25)                                                                                                                  | 4                                                                            |   | 4*1             | 1   | 5  |          |   | 4 | 4               | 4   | 4  |
|                                                                                                                       |                                                                              | 5 | 5 <sup>*2</sup> | 2   | 5  | ( /      | В | 5 | 5               | 3   | 2  |
| fets - FIF                                                                                                            | A                                                                            | 1 | 1               | 1   | 5  |          |   | J | 6               | 6   | 2  |
| 第2問                                                                                                                   |                                                                              | 2 | 2               | 8   | 5  | 第4問      | A | 1 | 1               | 2   | 4  |
| (20)                                                                                                                  | В                                                                            | 3 | 3               | 4   | 5  |          |   | 2 | 2               | 5   | 4  |
|                                                                                                                       |                                                                              | 4 | 4               | 4   | 5  |          |   | 3 | 3 <sup>*5</sup> | 4   | 4  |
| (注)                                                                                                                   | 1 *1は,解答2の場合は3点を与える。<br>2 *2は,解答1,3,4の場合は2点を与え<br>る。<br>3 *3は,解答1の場合は2点を与える。 |   |                 |     |    |          | В | 4 | 4               | 9   | 4  |
|                                                                                                                       |                                                                              |   |                 |     |    |          |   | 5 | 5               | 5   | 4  |
|                                                                                                                       |                                                                              |   |                 |     |    |          | 1 |   | 1               | 6   | 5  |
| 4                                                                                                                     |                                                                              |   |                 |     |    |          | 2 |   | 2               | 3   | 5  |
| 4 *4は,解答2の場合は2点を与える。<br>5 *5は,解答5,6の場合は2点を与える。<br>6 *6は,解答7,8の場合は2点を与える。<br>7 第1問~第4問は必答。第5問,第6問の<br>うちから1問選択。計5問を解答。 |                                                                              |   |                 |     |    | (15)     |   | 3 | 3               | 7   | 5  |
|                                                                                                                       |                                                                              |   |                 |     |    | 第6問      | 1 |   | 1               | 2   | 5  |
|                                                                                                                       |                                                                              |   |                 |     |    |          | 2 |   | 2*6             | 9   | 5  |
|                                                                                                                       |                                                                              |   |                 |     |    | (15)     |   | 3 | 3               | 7   | 5  |